Sign changes of error terms related to arithmetical functions
نویسندگان
چکیده
منابع مشابه
Sign changes of error terms related to arithmetical functions
Let H(x) = ∑ n≤x φ(n) n − 6 π2x. Motivated by a conjecture of Erdös, Lau developed a new method and proved that #{n ≤ T : H(n)H(n + 1) < 0} T. We consider arithmetical functions f(n) = ∑ d|n bd d whose summation can be expressed as ∑ n≤x f(n) = αx+P (log(x))+E(x), where P (x) is a polynomial, E(x) = − ∑ n≤y(x) bn n ψ ( x n ) + o(1) and ψ(x) = x− bxc − 1/2. We generalize Lau’s method and prove r...
متن کاملSign changes of error terms related to arithmetical functions par Paulo
Résumé. Soit H(x) = ∑ n≤x φ(n) n − 6 π2x. Motivé par une conjecture de Erdös, Lau a développé une nouvelle méthode et il a démontré que #{n ≤ T : H(n)H(n + 1) < 0} T. Nous considérons des fonctions arithmétiques f(n) = ∑ d|n bd d dont l’addition peut être exprimée comme ∑ n≤x f(n) = αx+ P (log(x)) + E(x). Ici P (x) est un polynôme, E(x) = − ∑ n≤y(x) bn n ψ ( x n ) + o(1) avec ψ(x) = x − bxc − 1...
متن کاملArithmetical Functions I: Multiplicative Functions
Truth be told, this definition is a bit embarrassing. It would mean that taking any function from calculus whose domain contains [1,+∞) and restricting it to positive integer values, we get an arithmetical function. For instance, e −3x cos2 x+(17 log(x+1)) is an arithmetical function according to this definition, although it is, at best, dubious whether this function holds any significance in n...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal de Théorie des Nombres de Bordeaux
سال: 2007
ISSN: 1246-7405
DOI: 10.5802/jtnb.570